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The growth of localized disturbances in a laminar 
boundary layer 
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The classical theory of the instability of laminar flow predicts the growth (or 
decay) rate and phase velocity of two-dimensional small disturbance waves. In  
order to study the growth and dispersion of an originally localized spot-like 
disturbance, the initial disturbance is built up from all possible simple-harmonic 
waves. The propagation velocity and amplification rate for each vector wave- 
number then follows from the two-dimensional theory by Squire’s generalization. 
The initial development can be solved explicitly by a power series in time, and 
the asymptotic behaviour is also predicted. For times between initial and final 
periods, exact numerical calculations have been made using an IBM 709 electronic 
computer. The role which localized disturbances can play in ultimate transition 
to turbulent motion is also indicated. 

1. Introduction 
The classical laminar-flow instability theories were developed with the assump- 

tion of two-dimensional disturbances. Squire (1933) has shown that, a t  least for 
the incompressible case, the development of three-dimensional (oblique) distur- 
bances can be predicted from the corresponding two-dimensional problem at a 
reduced Reynolds number. For the boundary layer, as indeed for all real parallel 
flows, the oblique disturbances have a higher critical Reynolds number, and 
consequently theoretical interest in the problem of three-dimensional instability 
subsided for a while. On the other hand, recent experimental evidence 
(Klebanoff & Tidstrom 1959) emphasizes the three-dimengional character of 
transition, and also points to the pre-existence of three-dimensional disturbances 
long before actual transition occurs. 

Two salient points emerge from a re-examination of the question of three- 
dimensional disturbances. One is that the amplification factors have only a very 
broad peak for the two-dimensional disturbances; consequently the slightly 
oblique waves can still form highly amplified three-dimensional wave packets. 
The other is that the oblique waves contribute a vorticity component in the 
direction of the mean flow which in turn interacts quite effectively with the mean 
vorticity of the boundary layer. In  this way an important mechanism is available 
for the non-linear development of the vorticity component perpendicular to the 

* Present address : Department of Mechanical Engineering, Princeton University, 
Princeton, New Jersey. 
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wall boundary (Kovasznay 1960), a mechanism that is absent in strictly two- 
dimensional flows. 

Against this background, it was therefore natural to attempt the exploration 
of a small, initially concentrated pulse-like disturbance as it evolves according 
to the linear theory. The most important questions were: how rapidly is the 
pulse-like character of the disturbance lost, and how rapid is the approach toward 
the ultimately two-dimensional wave packet? In  this sense, the present work is 
more of a heuristic approach. 

The initial disturbance was taken as a circular Gaussian pulse. The standard 
deviation was chosen sufficiently small compared to the most amplified wave- 
length so that the Fourier spectrum of the disturbance is practically constant 
(as that of the Dirac function) within the wave-number range of amplified waves. 
A Dirac ‘delta function’ could have been chosen, but this function is the same as 
the limiting case of a Gaussian distribution. 

From Squire’s theorem and the work of Watson (1960), it can be seen that the 
most amplified wave will ultimately dominate, and so it was found useful in the 
later development to normalize all variables with respect to the wavelength of the 
most amplified wave and not with respect to  the boundary-layer thickness. 

The results of this work were first presented by Criminale (1960). After the 
present paper was submitted for publication a related problem was treated by 
Benjamin (1961) concerning the growth of a localized disturbance in an unstable 
liquid film and leading to general results that are not inconsistent with our more 
comprehensive analysis. 

2. The classical stability problem 
The laminar-flow instability problem is expressed mathematically as a com- 

bined initial-value, boundary-value problem. The attention here will be confined 
to the case of a laminar boundary layer over a flat plate with the time-independent 
solution due to Blasius. Now assume that, a t  a time t = 0, the boundary layer is 
subjected to a localized three-dimensional disturbance. In  order to study such an 
event, two assumptions are introduced. First, the disturbance will be considered 
weak enough so that the equations of motion can be linearized through the use of 
a perturbation technique. Secondly, the boundary layer will be taken as one of 
constant thickness.* The growth or decay of the disturbance in time will then be 
computed. 

The classical instability theory was developed in just such a manner as outlined 
above but with the additional assumption of two-dimensional periodic distur- 
bances. (For a full account see Lin 1955.) Squire (1933) has proven, however, 
that every three-dimensional (oblique wave) disturbance is equivalent to a two- 
dimensional disturbance at  a lower Reynolds number. Hence, the coupling of 
this theorem with the results of the purely two-dimensional problem provides a 
means for solving the three-dimensional problem. 

For the boundary layer on the flat plate, the co-ordinate system is chosen so 

* In $ 7 C  the downstream growth of the boundary-layer thickness is included by per- 
mitting 6 to increase stepwise. This refinement did not, however, modify the results to an 
important degree. 
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that x' is parallel to the undisturbed flow and positive downstream, z' is parallel 
to the surface and to the leading edge, and y' is normal to the surface and positive 
only. In  the undisturbed state there is only one velocity component, U'(y') ,  
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FIGURE 1. Constant amplification rates of two-dimensional disturbance in Blasius 
boundary layer (after Shen 1954). 
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FIGURE 2. Constant phase velocity for neutral two-dimensional disturbance in Blasius 
boundary layer (after Zaat 1958). 

which is in the flow direction. The disturbance velocity components corresponding 
to XI, y f ,  z' are denoted by u', v', w', which are functions of x', y', zt and time t ,  
respectively. The total disturbed velocity at any time is the vector sum of these 
three components and that of the undisturbed motion. With a two-dimensional 
system, the w f  component and the dependence on x' are missing. 
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Proceeding in the classical manner, then, a stream function p’(x’, y’, t )  can be 

(2.1) 
introduced such that 

A single partial differential equation results which admits solutions in the form 

(2.21 

ut = aptlay/, vt = - apt/axt. 

?lf1(x’, y‘, t )  = #’(y’) eia’(S’-C‘t) 

where a’ is the real wave-number (chosen arbitrarily) and C’ is the complex wave 
velocity. The real part of C‘ is the phase velocity, and the imaginary part gives 
the amplification factor. It is the usual convention that only the real part of 4’ is 
significant for the physical problem. 

With the solution (2 .2)  the system reduces to it fourth-order ordinary dif- 
ferential equation known as the Sommerfeld-Orr equation of instability theory. 
Applying the boundary conditions to the set of formal solutions leads to an 
eigenvalue problem where the complex quantity C = C/Uh is a function of 
a = a’s* and R = UhS*/v. (All quantities have been non-dimensionalized with 
respect to UA the free-stream velocity, 6” the boundary-layer displacement 
thickness, and v the kinematic viscosity.) According to whether the imaginary 
part of C is positive or negative, the disturbance is unstable or stable. The 
boundary between the stable and unstable domain is the neutral-stability curve 
where C is real. The results are shown in figures 1 and 2 .  

3. Formal solution of the three dimensional problem 

(with w‘ and z‘ retained) can be found by using Fourier decomposition, viz. 
Using the solution of the classical problem, solutions of the complete system 

with similar expressions for 8, G’ and 17’. The inverse transforms are 

J - m  J - m  

and similar expression for v‘, w’ and p‘. 
Now consider all quantities non-dimensionalized with respect to UA and &, the 

latter being the most amplified wave-number. This choice appears more con- 
venient than normalization with the boundary-layer displacement thickness. 

The general solution of the three-dimensional problem has other limitations, of 
course. The initial disturbance must still satisfy the continuity equation and the 
boundary conditions. Since the co-ordinate y has not been transformed, p, y and 
U are not constants but functions of y, and a set of differential equations in y must 
be still satisfied. It is an important simplification if the initial disturbance is not 
an arbitrary function of y, but is built up from the eigenfunctions of the Som- 
merfeld-0rr equation. In  that case the particular solutions of the system are 
(with T = &&t) 

and similar forms for v”, G and 17, where c is a complex function of p, y ,  9 (see 
below for 9). The real and imaginary parts have the same meaning as given for C, 
but p, y ,  c are not functions of y any more. By abandoning the arbitrary depen- 
dence on y in the initial value problem, one has only the eigenfunctions of the 

G(P, Y ;  y, 7) = Wp, y ;  y) e-{pcT, (3.3) 
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Sommerfeld-Orr problem available. Of course, if a complete orthonormal set of 
eigenfunctions were available, arbitrary initial conditions could be chosen. 
Unfortunately, the higher modes of the eigenfunctions for the Sommerfeld-Orr 
problem have never been computed; indeed their general properties are unknown, 
so that the problem must be restricted in this sense. 

Then, with Squire's substitutions 

a2 = p2+ y2, 
aR = b9, 
c = c,  

a set of particular solutions can be obtained 

acos8+&sine = - (3.8) [':I a = (gz+y2)a, R =(,8/a)W ' 
where #(y, a, R) is the solution of the two-dimensional problem and 

Squire's conclusions easily follow, if we remember that R is always smaller than9.  
The three-dimensional problem has now been completely reduced to the two- 

dimensional problem, and the latter is assumed to have been solved. More detail 
is given by Criminale (1960). 

8 = tan-l(y/P). (3.9) 

4. The equivalent membrane problem 
The eigenfunctions and the eigenvalues are all assumed to be known for the 

two-dimensional problem, and they are used for the solution of the three-dimen- 
sional problem. In fact, surprisingly few eigenfunctions have ever been computed 
even though papers have been written about the subject for more than thirty 
years. Specifically, the eigenvalues that have actually been computed are for the 
first mode alone (i.e. the data shown in figures 1 and 2), and only a very few of the 
eigenfunctions have ever been computed. To the authors' knowledge, the only 
eigenfunctions that have been computed for the Blasius boundary layer are the 
two examples due to Schlichting (1935). 

The known eigenfunction of the first mode,* $(y), is a single lobe curve (having 
no zero crossings for finite y). The corresponding w( y) normal-velocity distribution 
is similar in shape and reaches a very broad maximum in the outer part of the 
boundary layer. The u(y) component has both a positive maximum and negative 
minimum. These disturbances are superimposed on a mean flow U(y) (see 
figure 3). If the stream function for the mean flow is defined by 

y"(Y) = J; U(V)dV, 

it  is clear that with the superimposed disturbances having the stream function 
defined by (2. 1),  the instantaneous y-position of a given streamline will oscillate in 
time. In  the outer half of the boundary layer where the broad peak of $ and also 
of w occur, the amplitude of the oscillation of the streamline position in the 

* A more thorough discussion of this subject can be found in Grohne (1954). 
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y-direction will be almost constant (only a slowly varying function of y). In  
other words, if one specifies the normal velocity v in the outer portion of the 
boundary layer, this is not very sensitive to the actual choice of distance from the 
wall. 

If it is further assumed that the general shape of the eigenfunctions as plotted 
against y is similar for different eigenvalues (a and C), then this pulsation of the 
streamline position in the outer portion of the boundary layer can serve as a new 
variable and it can be visualized as the oscillation of an ‘equivalent membrane ’. 

-0.5 L 
FIGURE 3. Eigenfunction for two-dimensional disturbance in laminar boundary layer 

for first neutral vibration (after Schlichting 1935). 

The normal displacement velocity (y-direction) of a two-dimensional membrane 
is considered now as the relevant variable, and the actual detailed distribution of 
v-velocity across the boundary layer will be ignored. Such a description would be 
rigorously correct only if all eigenfunctions were identical. 

The membrane velocity is defined by 

V ( X ,  z,71= MX, Y, 2, 7)iy=yl, 
it being specified that y = y1 where avlay = 0 (y;/6 = 0.8 for practical purposes). 

It would be very difficult to derive the differential equation governing V ( x ,  z ,  7) 
in physical space and time, but it is relatively easy to obtain it in Fourier-trans- 
form variables. From the definition of transform relations 

J - w  J - m  

the propagation of P(P, y ,  7 )  is simply obtained as 

P(P, y ,  7 )  = P(P, y ,  0 )  e-ipc(B.r)7, (4.3) 

where equations (3.4), (3.5) and (3.6) give the correspondence with the two- 
dimensional problem. 
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Consider now as initial condition a Gaussian pulse located at  xo,xo. At this 
location, let the membrane disturbance at  T = 0 be given as 

27r52 2 5 2  

where 5 is the (non-dimensionalized) standard deviation. 
By applying (4.1), we find 

(4.4) 

Then, by substituting (4.5) into (4.3) and using the inverse transform given in 
(4.2), we can write the result for any positive time as 

where c = c(P ,  y )  is the complex phase velocity (it is a function of the wave 
numbers p, y) .  Also ?? = x - x o ,  X = Iz & zol;  i.e. the co-ordinate system is thus 
displaced to the location of the initial disturbance. 

5. Extension of the available eigenvalues 
Using the transformation relations (3.4)-(3.6), the familiar stability curves, 

which result from the two-dimensional approach, now become surfaces with the 
addition of one more variable. In  order to present the eigenvalue c analogously, 
one makes a cut of this surface for a constant value of the Reynolds number 9. 
These curves are then projected into the (p, 7)-plane. The most amplified wave is, 
of course, the one in the direction of the mean flow, according to Squire's con- 
clusions that two-dimensional disturbances are most amplified. * At the same time, 
however, it  should be noted that near the most amplified vector wave-number 
there is a rather flat-peak amplification region. Figure 4 shows three graphs for 
W = 700,1300,2300; here ci is a function of 6". Figure 5 gives the corresponding 
graphs for c, as a function of the same variables. 

The details of obtaining the 'kidney ' curves of figure 4 and the accompanying 
phase velocity plots of figure 5 are quite simple. Figure 1 is cross-plotted by 
varying the angle 6 to obtain the results as given in figure 4. The phase velocity 
is obtained in the same fashion. 

The lower critical Reynolds number can be translated into a maximum angle 
denoted by Om,,, and is given by the relation 

om,, = cos-"R,/W], (5.1) 

indicating that there are no amplified waves more oblique than this value. 

* This conclusion differs somewhat from the work of Watson (1960), who also computed 
generalized eigenvalues for three-dimensional disturbances. The fact is, at least so far as it 
is known, there are no closed amplification curves for the Blasius boundary layer (although 
there are in the case of plane Poiseuille flow). Hence the point of maximum amplification 
is always the one corresponding to a pure two-dimensional wave. 

5 Fluid Mech. 14 
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It is convenient to use an approximate analytical expression for ci and c,. If 
a Taylor expansion is made around the point of maximum amplification for both 
c,  and ci as a function of wave-number, and only terms no higher than second 
order are retained, the results can be written as 

FIGURE 4. ‘Kidney’ curves of constant amplification for oblique waves (cross 
plotted from figure 1). 

Y’f 

FIGURE 5. Constant phase velocity curves for oblique amplified waves. 

where the coefficients a;, a;, b;, b; are all positive and, in general, functions of the 
Reynolds number. It is clear that (5 .3)  replaces the ‘kidney’ curves of figure 4 by 
ellipses and (5.2) replaces the curves in figure 5 by parabolas. 

It is now more convenient to eliminate 6” from the equations 

c, = C,(J+a,(/3- 1)+a,y2 (5.4) 
and ci = Cio-b,(p-  1)2-b2y2, (5.5) 

(5.6) 

where c, = c;/u;, ci = cyu;, I a1 = a;(&&*), a2 = ~ ; ( / 3 ; 6 * ) ~ ,  
b, = b;(/3;6*)2, b, = b;,(p;6*)2. 

The quantity 6*, is, of course, retained implicitly in 92 and the product (p;S*). 
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6. General features of the wave packet 
Unfortunately, closed-form results cannot be obtained for the Fourier integral, 

even with the use of the approximate functions given in (5.4) and (5.5). On the 
other hand, the overall behaviour of the disturbance in time can be examined in 
wave-number space. Hence, without actually performing the integration, a great 
deal can be learned by merely inspecting the time behaviour of the integrand in 
(4.6). In  turn, salient qualitative features in physical space become evident. 

The dependence on the Reynolds number is implicit in the Fourier integral 
formula, and its effect is small so that it can be treated more as a slowly varying 
parameter and not as an independent variable. (Note that W enters only through 
the function c(W),  the complex eigenvalue.) An indication of its effect can be 
given by examining the order of magnitude of the variation of phase velocity. 
Define a time T as the value of r for which the ratio c& t/hh is equal to unity. This 
is the time needed by the most amplified wave to travel one wavelength. Typical 
values of T are given in the accompanying table. 

92 TIT 
500 15.84 
900 17.08 

1500 18.80 

Then, in general, the time scale depends somewhat upon Reynolds number at the 
initial location of disturbance, but the Reynolds number dependence is still 
rather weak. 

The integral in (4.6) can be rewritten as a cosine transform (the wave packet 
being symmetrical with respect to the z = zo plane) 

v = 1 Irn 1; e-H+(bz+yz) a~ cos p (3 - c,7) cos y~ dpdy. (6.1) 
= o  

By temporarily abandoning the Gaussian pulse we can find the first result. 
There is a maximum angle where 0 = emax. Substituting the values of (/I,?) at 
this point, a solution is 

V, = A,COSIB,(~-C,N~)COSYNZ, (6.2) 

where the subscript N refers to neutral oscillations; i.e. 

PN = a N  cos emax, YN = sin emax, (6.3) 

and 
With a change of variables 

A, = r2 exp ( - &zak). 

- 
x = pN(x-CrN7), z = y,Z, (6.5) 

it  is easy to see that the wave pattern in the (b, 8)-plane is the familiar cellular 
pattern, with standing waves with yaw angles of -t O N ,  given by the relation 

0, = tan-1 [Z/Z]. (6.6) 
5-2 
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Returning to the Gaussian pulse, another important result can be obtained if 
the maximum envelope of the oscillations is considered, without the phase factor. 
Denoting the (real) amplitude by 

2 = e-W(P+P) eDi 7 ,  (6.7) 

y* = 0 (6.8) 

(6.9) 

the maximum of (6.7) can be found a t  y* and p*, where 

for all time, and 
p* = [4b, - a2/r] + [(4b, - V ~ / T ) ~  + 12b,(~,-  a,)]& 

(The approximate forms (5.4) and (5 .5 )  have been used for these calculations.) 
The result of (6.9) has been plotted in figure 6 for two different values of the 
Reynolds number 9. In both cases, the limits p* -> pmax as r + co, where com- 
puted by assuming that the coefficients in (6.9) are independent of 9. As indicated 
in the graph, the approach to the limiting value is quite rapid. 

6bl 

--(pmax>w=wo = 1-06 

___c_ _ _ _ _ _ _ - -  ----- 

--- (/?max).+sw = 1.03 
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p* o.6r I 
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1 2 
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h 

FIGURE 6. Wave space maximum of amplitude A .  

The change of A with respect to y can be determined by computing the second 
derivatives and evaluating them for the values of (p*, y*). This quantity is 

where 

(6.10) 

The ratio in (6.10) is plotted in figure 7 for the same two values of 9. In real 
space, the group demodulation corresponds to group spreading, and it is a 
measure of the lateral transmission of energy compared to the spreading in the 
flow direction. As was shown in (6.10), the ratio approaches a finite limit for 
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7 + co. From the limiting values of (6.10) the original 'almost flat' spectrum 
becomes an elliptical paraboloid centred at the point of maximum amplification 
with the major axis of the ellipsis parallel to the y-axis. This much can be sur- 
mized also from the 'kidney curves' (figure 4) .  

u 

I ~. 

I 
1 1  

I 
I r I 

I I I I I 

2 4 6 8 10 
r 

FIGURE 7. Group demodulation. 

I n  physical space it can be inferred that the original small circle becomes an 
elliptical patch of most amplified waves with the major axis of the patch along the 
?-axis, having a ratio of spreading of approximately 2 :  5 .  

Finally, figures 8 and 9 show the computed band widths of A^ measured from 
the maximum point both in P and y. The reciprocal values of these give an 
indication of the number of oscillations in the wave packet. Using the Taylor 
series expansion of the amplification and setting it equal to zero, we obtain the 
equations for P and y 

[ ( ~ i ~ - b ~ ) + ( 4 b ~ - ~ ~ / 7 ) P - 3 b ~ P ~ ] ~ +  ( 4 b , - u 2 / ~ ) - 6 b 1 P  = 0,  (6.11) 

y = 5 1/(u2 + 2b2@maxT)*. (6.12) 

The results of (6.11) are shown in figure 8 and (6.12) in figure 9. Quite properly, 
the initial value is l /u for 7 = 0,  and the band narrows to Pmax as 7 -+ co. In the 
transverse direction, y varies from & l / u  for 7 = 0,  and as time goes to infinity it 
approaches zero. Again, the combined effect produces, in the limit, the complete 
disappearance of oblique waves, and there remains only the pure sine wave with 
the Tollmien-Schlichting most-amplified frequency. 

The group velocity of the waves is denoted by cg. It can be obtained in the 
usual manner as 

c; = [!&I = cro+a1(2P*- 1). (6.13) 

For all numerical calculations, u was chosen to be the same constant value 
u = 0.1; and since u = &u', we have u' = 0.1/2n = 0.0159h;. This meets the 
requirement that the Gaussian pulse is significantly different from zero for only 
a few percent of the most amplified wavelengths. 

aP ,8=,8', y=y* 
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FIGURE 8. Downstream band-width. 
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7. Methods of approximation 

A power series expansion for V in time around r = 0 has the form 

A. Initial period 

The function c ( p ,  y )  can be approximated by the polynomial in p and y given in 
(5.4) and (5 .5 ) )  and the series (7.1) is readily evaluated. Define a complex linear 
differential operator 

where C is a linear operator obtained by replacing each p in the polynomial by 
a/aix and each y by a/aix. Using this definition, the expansion for V becomes 
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where the asterisk indicates the complex conjugate, and V, is the value of V at 
T = 0; i.e. (4.4) for the present case. 

Some calculations for the initial period of distortion are now in order. 
Expanding (7.3) up to second order in T gives 

v = v , + T ~ T ( v , ) f T 2 [ - T - - ~ ] a v , + . . . ,  (7.4) 

where the subscripts r and i refer to the real and imaginary parts of 9. 
Using the functions (5.4) and (5.5) in (7.2), the operators become 

a a 2  a a 2  
cTo-a )--2b1-+a2-- 

6 p , = - (  1 ax az2 axaz,’ (7.5) 

After performing the prescribed operations and combining terms, the first two 
terms give - 

By examining (7.7) together with (7.4), information can be extracted without 
having to resort to numerical work. Up to the values of time that are considered 
here, it can be noted that neither the maximum amplification value, cio, nor the 
coefficient for amplification in the lateral direction b, appears yet in the expan- 
sion. It is not until terms of the second order in T are retained that they will have 
influence. Consequently, the first change is a flattening down of the peak and a 
spreading out of the distribution. The spread is much greater in the %direction 
than in % since (T is present a t  a higher power in the denominator in the Z2 term of 
(7.7). This behaviour was already suggested in 5 6. 

B. Asymptotic behaviour for large T 

Inspection of the integrand in (6.1) showed that as time progresses the original 
spectrum tends to cluster and become peaked around the point of maximum 
amplification. It is now possible to approximate the integral for large time by 
the method of steepest descent. 

The product pc is approximated by a quadratic function of p and y over the 
amplified wave number region. With (5.4) and (5.5) for the eigenvalue, the 
product pc is cubic in p. With these substitutions in (6. l), the double integral can 
be integrated once with respect to y :  
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To obtain only the amplified portion of the spectrum, the integration in /3 will
be limited to /31 < j3 < pz, the band of amplified region for y = 0. The integration
is now performed and the final result becomes

VIX
eQT

4rm &I1 !?2)
{cos~[erf(K,)-erf(k,)]-~exp(-I(~)~~k~e~zsin(~-2Jr,~)~~

+$exp(-A$)
s

ki
e”“sin(f$-21c,[)d[  , (7.9)

0 I
where qi = B2 + a$ and

Q = cimar -B/3& - $+

w = tan-l (al/B),

K,, = dqg ,d cos[ 2 (;)-g-Ps(x-;)]'

Ki =&q* /I sin E[  2  (2)-&l+-;)]y

ki = T*q+[/31sin(g)-$sin(X-g)],

2

r2 = (2B/3,,,)2+ 1 ,

x = tan-l Z/T - ho - al)

2B/%nax *

The dominating term of the expression is e QT, and it decreases as exp ( - z2) for
a fixed 7. Each of the two integrals in the brackets can be shown to decay as
2-l exp ( -z2). The final terms (the error functions) approach unity as
1 - 27-l exp ( - Z2).

The location of the maximum amplitude of the asymptotic expression is found
to be 2” = 0 (7.10)
for all 7, and

Z* = [Cro  + Ul(2&ax - 117. (7.11)

The rate at which X* is convected downstream is the velocity

Vu = Cr0+a1(2&ax-  1). (7.12)
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Both (7.11) and (7.12) have been plotted in figure 10 assuming the disturbance 
occurred originally at  W = 500. This result is compatible with that found in (j 6, 
since vG agrees with cg evaluated at p* = &ax (6.13). If  a particle was released at 
xo, xo at 7 = 0 and it travelled downstream with the phase velocity of the most 
amplified wave, it would have a position 

(7.13) 

and a velocity vp = cr0. The particle would move more slowly than the group 
velocity (7.12). In  figure 10, Zz and vp have been entered for comparison. 

The asymptotic values for the standard deviation of the wave packet are 

The results again show that 0-z > ui, in agreement with (j 6. 
Another quantity is connected with group spreading 

(7.14) 

(7.15) 

(7.16) 

Its numerical values, for the Reynolds numbers used in (j 6, are 

Ellax = 3.29, W = 500, 

= 2.63, 9? = 900. E l l a x  
The agreement of (7.16) with the values in figure 7 is much better for the large 

W value. This is primarily because of the difference in the limiting expressions 
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(7.16) and (6.10). For (6.10)) the coefficients do not change very much with 
Reynolds number. 

The shape of the maximum wave packet can be illustrated. The major and 
minor axes of the ellipse are computed and compared to the Tollmien-Schlichting 
wavelength as 

and 

(7.17) 

(7.18) 

where 2a’, 2b‘ are the major and minor axes of the ellipse. The coefficients ez and 6 ,  

can be obtained from breaking up the ratio (7.16). 
Typical values for the spreading coefficients are 

E-, = 0.297, e; = 0.0876, for 8 = 500; 

e-, = 0.226, eZ = 0.0855, for 92 = 900. 

These values indicate that the approach to the pure Tollmien-Schlichting wave 
train is exceptionally slow. For example, if it  is assumed that the spot originated 
at 9 = 900, then to attain a lateral spread of as much as the centre of the 
group wave packet must move as far as 13,680&! The asymptotic situation is 
indicated in figure 11. 

0 2 r 
IN 

?= 0 
w= 900 

FIGURE 11. Asymptotic wave packet. 

The maximum amplitude occurring in the group grows as 

(7.19) 

where (Ci)max = ci(Pmax, 0). The constant phase lines in the wave packet can be 
found from (7.9) and are controlled by the function q5(Z,Z2,~). Constant phase 
occurs along q5 = I? = const. From (7.9) it is found that 

(7.20) 
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Typical values are 

(&/<.J$ = 0-802 for g = 500, and = 0.831 for 9 = 900. 

Since these values are less than unity, the ellipses have their major axes parallel 
to the Z-axis. Indeed, they are almost circles. It can be concluded, therefore, that 
within the wave packet, the phasing is locally that of Tollmien-Schlichting waves 
(two-dimensional waves), but with a sweep-back in X. (The sweep-back is already 
clearly discernible in figure 12g). 

c------------ 
____------__ ___--- __--  _.--------- 

__-------,_ 

/------- 

'---- -____._. 

--. -______ ----- 

FIGURE 12. (For legend see p. 77) .  
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FIGURE 12. (For legend see p. 77). 
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10 

5-  

(a) 

C. Numerical analysis 
There still remains a large gap between the initial period and the asymptotic 

region. For the values of time between these two periods, results have been 
obtained by evaluating the integral (6.1) on an IBM709 electronic computer 
using the functions (5.4) and (5.5). 

The initial disturbance was assumed to be a t  9 = 500. Moreover, since it did 
not complicate the computation, the Reynolds number growth was also taken 
into account, by permitting the boundary layer to grow in a stepwise manner. The 

V(% 097) 

7 = 0.7267 
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results of the calculations are presented in two ways. First, there are a series of 
V contour maps (figure 12a to 129, each one for a different valueof 7). Secondly, 
V(2,O) along the line Z = 0 is plotted in figure 13a and 13b. 

There is some additional information included in figure 12a to 129. On every 
contour map, Z:, the location of the particle moving with the phase velocity of 
the most amplified wave, has been marked. For the earlier times the circle of 
standard deviation of the initial disturbance at the original location has been 
drawn; as time goes on, the circle gradually becomes a point at  the origin owing to 
the much greater 5 and X scale a t  larger T values. The addition of the particle 
location gives, in essence, a running comparison of the location of the pure 
Tollmien-Schlichting wave and the group wave packet. 

0.15 0.3 0.7 

FIGURE 14. 

The location of the maximum positive V-amplitude obtained in figures 12a to 
129 has been plotted in figure 10. Except for the initial period the location of the 
maximum travels for all practical purposes with the phase velocity of the most 
amplified wave. 

Judging from the velocity disturbance plots in figure 13a and 13b, the con- 
clusion that the group velocity exceeds the particle velocity is correct. The figures 
clearly indicate that wavea are coming in from the downstream side of the packet 
and then are going out at the rear. 

The development of the wave packet can be easily followed in figure 12a to 129, 
and in figure 13 a and 13 b. If pulses were released at  random intervals from a fixed 
location Z = 0, Z = 0 the resulting disturbance V(Z, Z, t )  a t  any given location 5, 
Z would consist of a random sequence of wave trains. The maximum numerical 
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values of the disturbance Vmax(X, X) would be attained at  different times for every 
location 2,Z. This maximum value 'ever attained ' for every location X, Z is plotted 
in figure 14. The scales of X and Z differ by a factor of 10 for convenient presenta- 
tion of the data. The contours represent logarithmically increasing maximum 
levels. 

There is an isolated maximum at the origin due to the high-peaked initial pulse. 
A saddle point at x: = 2 0 , x  = 0 separates the decreasing and increasing portion 
of the disturbance. There is even the suggestion of wedged-shaped spreading, and 
for reference the average spreading angle of a turbulent spot (8.5") has been 
indicated (Klebanoff & Tidstrom 1959; Schubauer & Skramstad 1948; Schubauer 
& Klebanoff 1956). It is not suggested here that the spreading of the wave 
packet actually represents the behaviour of the turbulent spot. On the other 
hand, however, the presence of an existing turbulent spot could drive linearly 
unstable waves laterally into the laminar portion of the layer with a lateral 
spreading angle that is consistent with present theory. 

This work was sponsored by Project SQUID, which is supported by the Office 
of Naval Research, Department of the Navy. 
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